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Integral closure in characteristic zero

Theorem F. Suppose that R has characteristic zero and satisfies
condition Nj. Then R satisfies N,. In particular, if R is integrally closed,
and has characteristic zero, then R satisfies No.

Proof. Let L be a finite extension of K and S the integral closure of R in
L.

If we show that S is a finite R’-module, then since R satisfies Ny, S is a
finite R-module.

Thus, it suffices to prove the second statement.

In fact: At this point we do not need to assume R has characteristic
zero, only that the extension is separable.

We now assume R is integrally closed. Since L is a separable extension of
K, we may enlarge L to a Galois extension L’ of K.

If the integral closure of R in L’ is finite over R, then S is finite over R.

Thus, WLOG, we assume L is Galois over K.
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Integral closure in characteristic zero, continued

Since L is separable over K, we may write L = K(«a), for some « € L.

In fact, we may take a € S, such that L = K(a), by clearing
denominators in an equation of algebraic dependence for a over K.

Recall: Since R is integrally closed, the minimal polynomial f(x) for a
over K has coefficients in R. Let a = a1, ap, ... a, be the roots of f(x).

Thus, n is the degree of f(x) and every element in L can be written
(uniquley) in the form:

kol + kya+ -+ + kn,lanfl,

for kj € K.
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Integral closure in characteristic zero, continued

Let 01, ...,0, denote the elements of the Galois group of L over K. Set
d:=[[;,_;(oi(a) — oj(a))?, the discriminant of f(x). The proof is
complete if we show d - S C R[a].

Let s € S and write
s= k()1+kla+~~'+k,,,13nil, (*)

with k; € K. If we show that d - k; € R, for all j, then d - s € R[a].

Applying each o; to (*), we get an n X n system of equations of the form
O’,‘(S) = kol + kla,-(a) + -4 kn_la;(a)"fl. (**)

ko 0'1(5)
This yields a matrix equation A- | : | = | © |, where A= (o;(a)).

kn,1 O'n(S)
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Integral closure in characteristic zero, continued

Let A denote the adjugate of A. We note: (i) A is a Van der Mond
matrix. Thus det(A)? = d.

(i) Each o;(s) and o;(a) is integral over R, and thus belongs to S.
0'1(5)
(iii) Multiplying (**) by A shows the entries of A - : are integral

an(s)
over R.

(iv) Thus each det(A) - k; is integral over R. Therefore d - k; is integral
over R.

(v) On the other hand, for each i, oj(dk;) = dk;, for all j. Thus dk; € K,
for all i.

(vi) Since each dk; is integral over R, each dk; € R, as required.

March 25: Nagata Rings, part 2



Nagata’s example of a non-excellent DVR

The example below due to Nagata constructs a one-dimensional local
domain S with infinite integral closure and also a one-dimensional DVR
R that does not satisfy N,. Since an excellent local domain must satisfy
N>, R is not excellent.

We start with a field K of characteristic p > 0 such that [K : KP] = 0.
For example, one can take K to be Z,(Us, Us, . ..), where {U;} are
algebraically independent over Zj,.

We set T := K[[x]] and R := KP[[x]][K], where x is analytically
independent over K. We follow the steps below.

Step 1. For f =Y 2 aix' € T, f € R if and only if
[KP({ai}) : KP] < o0

Proof. Suppose f € R. Then we can write f = g1ky + - - + g, k,, for
g € KP[[x]] and k; € K. If we write gj := > o B;x,

then for all i > 0, we have «; = Binki + - - - + Birk,. It follows that
KP({a;}) C KP-ki+---+ KP -k, and thus [KP({a;}) : KP] < o0.
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Nagata's example, continued

Conversely, suppose [KP({a;}) : KP] < co. Let kq, ..., k, be a basis for
KP({a;}) over KP.

Then for each i > 0, we have an equation «; = Bi1ky + - - - + Bi-k,, with
each 8; € KP.

It follows that if we set g; := > oy B;x’, then f = giky + - - + g/k, and
hence f € R.

Step 2. R is a DVR.

Proof. It suffices to show that xR is the set of non-units of R (and hence
xR is the unique maximal ideal of R) and (2, x"R = 0.

The second statement follows since ﬂloil x"T =0.

March 25: Nagata Rings, part 2



Nagata's example, continued

For the first statement, suppose f = Z;’io a;x’ € Ris a non-unit. We
claim ag = 0.

Suppose not. Then f is a unit in T, and hence there exists
g =Y oo Bix" such that fg = 1.

If we solve the resulting system of equations:

agfo =1
o180 + agBy =0

for the B3;, we see that KP({8;}) € KP({«;}), and thus
[KP({Bi}) : KP] < o0, since f € R.

Thus, g € R, which is a contradiction, since f is a non-unit in R.
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Nagata's example, continued

It follows that ag = 0. Therefore, we can write f = xf.

Since the coefficients of f are the~same as the coefficients of f, only
shifted by one degree, by Step 1, f € R.

Thus, f € xR. Therefore, the non-units of R are contained in xR.

Since every element of xR is clearly a non-unit in R, it follows that xR is
the set of non-units in R. Thus, R is a DVR.

Step 3. T is the xR-adic completion of R.

Proof. Every f in T in the limit (in the xT-adic topology) of a sequence
of polynomials {f,} C K[x]. Each f, € R.

Thus, R is dense in T. Since T is complete in the xT-adic topology, T is
the completion of R.
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Nagata's example, continued

Step 4. Take Bo, 51, ... € K such that [KP({5;}) : KP] < co and set
a:=YyBix',soa€ T\R. Then a” € R and for an indeterminate Y
over R, YP — aP is irreducible over R.

Proof. In T, we have a = lim,_, a,, where
an:=Po+--+ Bax".

Thus, lim,_,o a = aP. Since aj = 8§ + -+ + B.x"P, it follows that
aP =37, Bx"P e R.

Now, a” is not a pth power in R, otherwise a? = rP, for some r € R, and
thus (a—r)?P =0, so a — r = 0, which gives a € R, a contradiction.

Since R is integrally closed af is not a pth power in the quotient field of
R, so YP — aP is irreducible over R.
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Nagata's example, continued

Step 5. Set S := R[a]. Then S = R[Y]/(YP — aP) and S is a one-
dimensional local domain whose integral closure S’ is not a finite
S-module.

Proof. From the previous step we know that YP — aP generates a height
one prime in the UFD R[Y]. Since YP — aP belongs to the kernel of the
natural map from R[Y] to RJa], it must generate the kernel. This gives
the first statement.

For the second statement, S is integral over R, so it is one-dimensional.
Moreover, h? € R, for all h€ S, so S must local.

To see this, suppose @1, @ C S are two maximal ideals. Since R is local,
QINR=QNR. Take h € Ql\Qz.

Then P e Q1NR=@QNR,so h? € Q. Thus, h € Q,, a contradiction.

Therefore S is a one-dimensional local domain.
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Nagata's example, continued

We now claim § = ﬁ[Y]/(YP —aP) = T[Y]/(YP — aP). Here the
completions of R and S are taken with respect to the x-adic topology,
which in each case yields the completion with respect to the respective
maximal ideals.

Suppose the claim holds. In T[Y], YP — aP = (Y — a)P, which shows
that T[Y]/(YP — a”) and hence S is reduced.

Thus, S is not analytically unramified. By what we have previously shown
in class, this implies that S’ is not a finite S-module.
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Nagata's example, continued

For the claim, we tensor the exact sequence
0— (YP—aP)R[Y] 5 R[Y] = S =0
with R to obtain the exact sequence
0 (YP — a?)R[Y]® R 5 R[Y] =+ 5 =0,

where we use the easy-to-check fact that R[Y] ® R = R[Y]. Since the
image of the map 7 is (Y? — aP)R[Y], this yields the claim.

Step 6. R does not satisfy N,. Hence R is a non-excellent DVR.

Proof. Since a finite extension of a ring satisfying N, must have a finite
integral closure, the first statement follows from the previous step. The
second statement follows from the fact that an excellent local domain
must be a Nagata domain, and hence must satisfy N,.
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Nagata's example, continued

Remark. The example above is a special case of Nagata's example, in
that Nagata takes more variables. In other words, he sets

T :=K][[x1,...,x4]] and R := KP[[x4, ..., xq]][K],

where x1, ..., x4 are analytically independent variables over F.

Nagata proves that R is a regular local ring with completion T. When
d=2and d =3, he uses R and T to also construct:

(a) An example of a two-dimensional Noetherian domain A and a
non-Noetherian ring B such that AC B C A’ and

(b) An example of a three-dimensional Noetherian domain C such that
C’ is not Noetherian.

These examples are relevant because on the one hand, every ring between
a one-dimensional Noetherian domain and its quotient field is
Noetherian, while on the other hand, the integral closure of any
two-dimensional Noetherian domain is Noetherian.
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