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Integral closure in characteristic zero

Theorem F. Suppose that R has characteristic zero and satisfies
condition N1. Then R satisfies N2. In particular, if R is integrally closed,
and has characteristic zero, then R satisfies N2.

Proof. Let L be a finite extension of K and S the integral closure of R in
L.

If we show that S is a finite R ′-module, then since R satisfies N1, S is a
finite R-module.

Thus, it suffices to prove the second statement.

In fact: At this point we do not need to assume R has characteristic
zero, only that the extension is separable.
We now assume R is integrally closed. Since L is a separable extension of
K , we may enlarge L to a Galois extension L′ of K .

If the integral closure of R in L′ is finite over R , then S is finite over R .

Thus, WLOG, we assume L is Galois over K .
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Integral closure in characteristic zero, continued

Since L is separable over K , we may write L = K(α), for some α ∈ L.

In fact, we may take a ∈ S, such that L = K(a), by clearing
denominators in an equation of algebraic dependence for α over K .

Recall: Since R is integrally closed, the minimal polynomial f (x) for a
over K has coefficients in R . Let a = a1, a2, . . . an be the roots of f (x).

Thus, n is the degree of f (x) and every element in L can be written
(uniquley) in the form:

k01+ k1a + · · ·+ kn−1an−1,

for kj ∈ K .
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Integral closure in characteristic zero, continued

Let σ1, . . . , σn denote the elements of the Galois group of L over K . Set
d :=

∏
i<j(σi(a)− σj(a))2, the discriminant of f (x). The proof is

complete if we show d · S ⊆ R [a].

Let s ∈ S and write

s = k01+ k1a + · · ·+ kn−1an−1, (∗)

with kj ∈ K . If we show that d · kj ∈ R , for all j, then d · s ∈ R [a].

Applying each σi to (*), we get an n × n system of equations of the form

σi(s) = k01+ k1σi(a) + · · ·+ kn−1σi(a)n−1. (∗∗)

This yields a matrix equation A ·

 k0
...

kn−1

 =

σ1(s)
...

σn(s)

, where A = (σi(a)j).
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Integral closure in characteristic zero, continued

Let Ã denote the adjugate of A. We note: (i) A is a Van der Mond
matrix. Thus det(A)2 = d .

(ii) Each σi(s) and σi(a)j is integral over R , and thus belongs to S.

(iii) Multiplying (**) by Ã shows the entries of Ã ·

σ1(s)
...

σn(s)

 are integral

over R .

(iv) Thus each det(A) · ki is integral over R . Therefore d · ki is integral
over R .

(v) On the other hand, for each i , σj(dki) = dki , for all j. Thus dki ∈ K ,
for all i .

(vi) Since each dki is integral over R , each dki ∈ R , as required.
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Nagata’s example of a non-excellent DVR
The example below due to Nagata constructs a one-dimensional local
domain S with infinite integral closure and also a one-dimensional DVR
R that does not satisfy N2. Since an excellent local domain must satisfy
N2, R is not excellent.

We start with a field K of characteristic p > 0 such that [K : Kp ] = ∞.
For example, one can take K to be Zp(U1,U2, . . .), where {Ui} are
algebraically independent over Zp .

We set T := K [[x ]] and R := Kp [[x ]][K ], where x is analytically
independent over K . We follow the steps below.

Step 1. For f =
∑∞

i=0 αix i ∈ T , f ∈ R if and only if
[Kp({αi}) : Kp ] < ∞.

Proof. Suppose f ∈ R . Then we can write f = g1k1 + · · ·+ gr kr , for
gj ∈ Kp [[x ]] and kj ∈ K . If we write gj :=

∑∞
i=0 βijx i ,

then for all i ≥ 0, we have αi = βi1k1 + · · ·+ βir kr . It follows that
Kp({αi}) ⊆ Kp · k1 + · · ·+ Kp · kr , and thus [Kp({αi}) : Kp ] < ∞.
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Nagata’s example, continued

Conversely, suppose [Kp({αi}) : Kp ] < ∞. Let k1, . . . , kr be a basis for
Kp({αi}) over Kp .

Then for each i ≥ 0, we have an equation αi = βi1k1 + · · ·+ βir kr , with
each βij ∈ Kp .

It follows that if we set gj :=
∑∞

i=0 βijx i , then f = g1k1 + · · ·+ gr kr , and
hence f ∈ R .

Step 2. R is a DVR.

Proof. It suffices to show that xR is the set of non-units of R (and hence
xR is the unique maximal ideal of R) and

⋂∞
i=1 xnR = 0.

The second statement follows since
⋂∞

i=1 xnT = 0.
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Nagata’s example, continued

For the first statement, suppose f =
∑∞

i=0 αix i ∈ R is a non-unit. We
claim α0 = 0.

Suppose not. Then f is a unit in T , and hence there exists
g =

∑∞
i=0 βix i such that fg = 1.

If we solve the resulting system of equations:

α0β0 = 1
α1β0 + α0β1 = 0

...

for the βi , we see that Kp({βi}) ⊆ Kp({αi}), and thus
[Kp({βi}) : Kp ] < ∞, since f ∈ R .

Thus, g ∈ R , which is a contradiction, since f is a non-unit in R .
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Nagata’s example, continued

It follows that α0 = 0. Therefore, we can write f = x f̃ .

Since the coefficients of f̃ are the same as the coefficients of f , only
shifted by one degree, by Step 1, f̃ ∈ R .

Thus, f ∈ xR . Therefore, the non-units of R are contained in xR .

Since every element of xR is clearly a non-unit in R , it follows that xR is
the set of non-units in R . Thus, R is a DVR.

Step 3. T is the xR-adic completion of R .

Proof. Every f in T in the limit (in the xT -adic topology) of a sequence
of polynomials {fn} ⊆ K [x ]. Each fn ∈ R .

Thus, R is dense in T . Since T is complete in the xT -adic topology, T is
the completion of R .
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Nagata’s example, continued

Step 4. Take β0, β1, . . . ∈ K such that [Kp({βi}) : Kp ] < ∞ and set
a :=

∑∞
i=0 βix i , so a ∈ T\R . Then ap ∈ R and for an indeterminate Y

over R , Y p − ap is irreducible over R .

Proof. In T , we have a = limn→∞ an, where

an := β0 + · · ·+ βnxn.

Thus, limn→∞ ap
n = ap . Since ap

n = βp
0 + · · ·+ βnxnp , it follows that

ap =
∑∞

i=0 β
p
i x ip ∈ R .

Now, ap is not a pth power in R , otherwise ap = rp , for some r ∈ R , and
thus (a − r)p = 0, so a − r = 0, which gives a ∈ R , a contradiction.

Since R is integrally closed ap is not a pth power in the quotient field of
R , so Y p − ap is irreducible over R .
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Nagata’s example, continued

Step 5. Set S := R [a]. Then S ∼= R [Y ]/(Y p − ap) and S is a one-
dimensional local domain whose integral closure S ′ is not a finite
S-module.

Proof. From the previous step we know that Y p − ap generates a height
one prime in the UFD R [Y ]. Since Y p − ap belongs to the kernel of the
natural map from R [Y ] to R [a], it must generate the kernel. This gives
the first statement.

For the second statement, S is integral over R , so it is one-dimensional.
Moreover, hp ∈ R , for all h ∈ S, so S must local.

To see this, suppose Q1,Q2 ⊆ S are two maximal ideals. Since R is local,
Q1 ∩ R = Q2 ∩ R . Take h ∈ Q1\Q2.

Then hp ∈ Q1 ∩ R = Q2 ∩ R , so hp ∈ Q2. Thus, h ∈ Q2, a contradiction.

Therefore S is a one-dimensional local domain.
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Nagata’s example, continued

We now claim Ŝ ∼= R̂ [Y ]/(Y p − ap) = T [Y ]/(Y p − ap). Here the
completions of R and S are taken with respect to the x-adic topology,
which in each case yields the completion with respect to the respective
maximal ideals.

Suppose the claim holds. In T [Y ], Y p − ap = (Y − a)p , which shows
that T [Y ]/(Y p − ap) and hence Ŝ is reduced.

Thus, S is not analytically unramified. By what we have previously shown
in class, this implies that S ′ is not a finite S-module.
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Nagata’s example, continued

For the claim, we tensor the exact sequence

0 → (Y p − ap)R [Y ]
i→ R [Y ] → S → 0

with R̂ to obtain the exact sequence

0 → (Y p − ap)R [Y ]⊗ R̂ î→ R̂ [Y ] → Ŝ → 0,

where we use the easy-to-check fact that R [Y ]⊗ R̂ = R̂ [Y ]. Since the
image of the map î is (Y p − ap)R̂ [Y ], this yields the claim.

Step 6. R does not satisfy N2. Hence R is a non-excellent DVR.

Proof. Since a finite extension of a ring satisfying N2 must have a finite
integral closure, the first statement follows from the previous step. The
second statement follows from the fact that an excellent local domain
must be a Nagata domain, and hence must satisfy N2.
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Nagata’s example, continued

Remark. The example above is a special case of Nagata’s example, in
that Nagata takes more variables. In other words, he sets

T := K [[x1, . . . , xd ]] and R := Kp [[x1, . . . , xd ]][K ],

where x1, . . . , xd are analytically independent variables over F .

Nagata proves that R is a regular local ring with completion T . When
d = 2 and d = 3, he uses R and T to also construct:

(a) An example of a two-dimensional Noetherian domain A and a
non-Noetherian ring B such that A ⊆ B ⊆ A′ and

(b) An example of a three-dimensional Noetherian domain C such that
C ′ is not Noetherian.

These examples are relevant because on the one hand, every ring between
a one-dimensional Noetherian domain and its quotient field is
Noetherian, while on the other hand, the integral closure of any
two-dimensional Noetherian domain is Noetherian.
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